Function reference
-
SeuratPipe
SeuratPipe
: Streamlining Seurat analysis
-
add_umap_embedding()
- Add UMAP embedding in Seurat object
-
cluster_analysis()
- Common clustering analysis steps
-
compute_module_score()
- Tailored module score calculation
-
create_seurat_object()
- Create Seurat object based on sample metadata.
-
dim_plot()
- Tailored dimensional reduction plot
-
dim_plot_tailored()
- Tailored dim plot
-
dimred_qc_plots()
- QC and general metadata plots visualised on dimensional reduced space
-
dot_plot()
- Tailored dot plot
-
feature_plot()
- Tailored feature plot
-
feature_plot_tailored()
- Tailored feature plot
-
find_all_markers()
- Wrapper FindAllMarkers function
-
find_clusters()
- Wrapper FindClusters function
-
find_neighbors()
- Tailored function for finding neighbors in lower dimensional space.
-
harmony_analysis()
- Analysis steps for Harmony integration
-
heatmap_plot()
- Tailored heatmap plot
-
install_scrublet()
- Install Scrublet Python Package
-
lognormalize_and_pca()
- Log normalisation and PCA computation
-
module_score_analysis()
- Module score analysis
-
pca_feature_cor_plot()
- PCA and feature metadata correlation heatmap plot
-
qc_filter_seurat_object()
- Filter Seurat object based on QC metrics.
-
run_cluster_pipeline()
- Pipeline for clustering analysis
-
run_harmony()
- Local implementation of RunHarmony function
-
run_harmony_pipeline()
- Pipeline for Harmony integration
-
run_qc_pipeline()
- QC pipeline
-
run_spatial_qc_pipeline()
- Spatial QC pipeline
-
run_umap()
- Tailored UMAP function
-
scatter_meta_plot()
- Tailored scatter plot of metadata
-
spatial_create_seurat_object()
- Create Seurat object based on spatial sample metadata.
-
spatial_dim_plot()
- Tailored spatial dim plot
-
spatial_feature_plot()
- Tailored spatial feature plot
-
subset_dim_plot()
- Subset dim plot
-
subset_feature_plot()
- Subset feature plot